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The thalamus is a central structure in the mammalian fore-
brain that receives inputs from various cortical and subcor-
tical structures and has dorsal and ventral subdivisions1. 

The dorsal thalamus is primarily composed of excitatory neurons 
that are devoid of lateral connections but project principally to 
the cortex, amygdala and striatum2. The ventral thalamus is dis-
tinct from the dorsal thalamus in that ventral thalamic nuclei do 
not project to the cortex2. Traditionally, the thalamus has been 
divided into individual nuclei on the basis of Nissl staining and 
gross input–output connectivity patterns3; there are about 50 
distinct excitatory nuclei in the dorsal thalamus, which can be 
grouped into seven major nuclear divisions: the anterior, medial, 
lateral, ventral, intralaminar, midline and posterior groups (Fig. 1 
and Box 1). An additional thalamic nucleus that contains a high 
percentage of inhibitory neurons, the thalamic reticular nucleus 
(TRN), represents the ventral thalamus4.

Research into sensory systems has driven much of the progress 
in systems neuroscience5, and thalamic research is no exception6,7. 
Because thalamic nuclei involved in early sensory processing (for 
example, the lateral geniculate nucleus (LGN)) receive their main 
driving inputs from low-level sensory regions (for example, the 
retina or the roof of the midbrain), the idea that individual thalamic 
nuclei may perform dedicated functions seemed reasonable8. This 
was supported by neural recordings and experimental lesions in 
animals, which showed that at least a subset of thalamic nuclei are 
specialized for sensory processing, such as the LGN for vision, the 
ventral posteromedial thalamus for somatosensation and the medial 
geniculate nucleus for audition9.

However, it is now widely recognized that the majority of tha-
lamic nuclei engage in a variety of functions rather than serv-
ing a single dedicated one, and this is the case from rodents to 
humans10–13. For example, anterior thalamic nuclei are necessary for 
spatial navigation and memory12,14, whereas the mediodorsal (MD) 
thalamus is necessary for executive control, memory and reward 
processing13. Although the idea of mapping a single nucleus onto 
a single function may not apply to most of the thalamus, it may be 
possible to map discrete functions onto a different level of organiza-
tion: thalamic subnetworks.

In this review, we first define two key concepts: subpopulations 
and subnetworks. We then discuss a historical view of thalamic cel-
lular diversity and show how modern neuroscience techniques are 
revealing heterogeneous subpopulations within individual thalamic 
nuclei. We next describe evidence for subnetworks in the para-
ventricular nucleus (PVT) and the TRN and use this as a basis to 
suggest that subnetworks also exist in other thalamic nuclei (that 
is, the parafascicular nucleus (PF), the LGN and the MD nucleus). 
We end by considering how the study of cellular or functional tha-
lamic diversity may help to uncover conserved subnetworks across 
species.

Cell types, subpopulations and subnetworks
To appreciate the levels of organization discussed in this Review, we 
need to explicitly define the three key terms that we use throughout 
this paper. We refer to the term ‘cell type’ as a feature that is iden-
tified via a singular approach. Within individual thalamic nuclei, 
cell types have traditionally been defined on the basis of morphol-
ogy, neurochemistry or physiology. For example, morphology can 
identify neurons based on differences in soma size and dendritic 
branching patterns1,3, whereas neurochemistry indicates that cell 
types can be either excitatory or inhibitory (for example, by the 
expression of enzymes for the synthesis and packaging of glutamate 
or GABA)3. Physiology, on the other hand, can identify neurons 
using distinct sensory response patterns (for example, in the LGN)2. 
The advent of modern genetic profiling has enabled the identifica-
tion of ‘subpopulations’: groups of cells that share a particular pat-
tern of gene expression, morphology, physiology and fine-grained 
connectivity. In this Review, we define one or more subpopulations 
serving a particular function as a ‘subnetwork’ (Fig. 2). Because each 
neuron or subpopulation often has multiple inputs and outputs, 
using the same subpopulation in different functional subnetworks is 
likely to be a common and efficient approach for functional circuit 
assembly. For instance, subpopulation A may form a subnetwork 
with subpopulation B for a given function, but forms a subnetwork 
with subpopulation X to serve a different function. Admittedly, this 
definition is forward-looking and will require future experiments to 
continue to validate and refine it.
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One example of a putative thalamic subnetwork came from 
examining neural activity patterns within the TRN15, which, up to 
that point, had been considered a functional monolith16. A com-
bination of electrophysiological recordings and connectivity-based 
optical tagging revealed the existence of subpopulations that share 

activity patterns depending on the principal thalamic structures to 
which they project15. More recently, state-of-the-art single-cell RNA 
sequencing (scRNA-seq) has indicated that these ‘TRN subnet-
works’ could be further specified using gene expression gradients17. 
The existence of gene expression gradients has led to redefinition of 
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Fig. 1 | Distinct thalamic nuclei in rodents. Excitatory nuclei can be grouped into seven major nuclear divisions (anterior, medial, lateral, ventral, intralaminar, 
midline and posterior groups)3. The TRN represents the major inhibitory nucleus. Diagrams representnterior to posterior (AP) coronal sections.
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subpopulations in several brain regions, such as the hippocampus18, 
the hypothalamus19 and the striatum20. Putative subpopulations 
generally exhibit discrete distributions for individual properties; 
however, recent neuroscience techniques such as scRNA-seq have 
revealed continuous gradients. The combination of several prop-
erties, both discrete and continuous, results in distinct subpopu-
lations; this is why this combinatorial classification approach is 
extremely useful in neuroscience18,21.

We suggest that this also applies to the thalamus, for which our 
understanding of subpopulations is in its infancy; this provides the 
opportunity to discover new subnetworks and enhance our under-
standing of how the thalamus operates and how it contributes to 
forebrain function more broadly in the context of sensation, action 
and cognition. Although we focus primarily on rodent studies, 
we highlight critical observations from other mammalian species 
including cats and primates.

Historical view of thalamic cellular diversity
The idea that thalamic neurons exhibit heterogeneity was rec-
ognized early. This heterogeneity can be observed at the level of 
morphology, inputs and outputs, physiology and neurotransmitter 
localization.

Morphology. Early influential attempts to distinguish thalamic 
neurons on the basis of cellular morphology used Golgi staining and 
identified three types22,23 (Fig. 3a). A large neuron termed ‘Buschzell’ 
(or bushy) was found across thalamic nuclei and had many short 
radiating dendrites and large numbers of spine-like appendages. A 

second large neuron, ‘Strahlenzell’ (or radiate), was star-like and 
had fewer, shorter dendrites with characteristic grape-like append-
ages close to dendrite branch points. A third small interneuron had 
few long, smooth dendrites and short axons. Additional support for 
these thalamic neurons was later recognized by other groups24–27, 
and it was shown that the larger excitatory neurons projected out-
side the parent nucleus to the cortex and lacked local connectivity, 
whereas the smaller interneurons only exhibited local connectiv-
ity28. Other than thalamic principal cells and interneurons, cells in 
the TRN received considerable attention1, which showed that there 
is also heterogeneity among inhibitory neurons within the TRN29–31. 
Subsequent studies that showed further morphological differences 
as well as variations in input–output patterns, physiology and gene 
expression revealed further diversity among thalamic neurons.

Input–output patterns. Detailed inspection of terminal arboriza-
tion in cortical areas led to the identification of two types of termi-
nals32,33: one had dense terminals in layer 4, with weak labeling in 
layers 1, 3 and 6, and the other type had dense terminals in layer 3 or 
5 but not in layer 4. It was hypothesized that these terminal patterns 
could come from different cell types. The LGN provided evidence 
for this idea; larger cells (X-like or biconical cells, Y-like or symmet-
rical cells) were found to project mainly to layer 4, and smaller cells 
(W-like or hemispheric cells) were found to project mainly to layer 1 
or 3 (ref.2). Individual thalamic neurons may have one type of termi-
nal in one cortical area and a different terminal pattern in another 
cortical area34,35, indicative of further heterogeneity within thalamic 
neurons. Moreover, it is possible for single thalamic neurons to send 

Box 1 | Thalamic nucleus abbreviations

AD: anterodorsal nucleus
AM: anteromedial nucleus
AMV: anteromedial nucleus, ventral part
AngT: angular thalamic nucleus
AV: anteroventral nucleus
AVDL: anteroventral nucleus, dorsolateral part
AVDM: anteroventral nucleus, dorsomedial part
AVVL: anteroventral nucleus, ventrolateral part
CL: centrolateral nucleus
CM: central medial nucleus
DLG: dorsal lateral geniculate nucleus
Eth: ethmoid nucleus
IAD: interanterodorsal nucleus
IAM: interanteromedial nucleus
IGL: intergeniculate leaflet
IMA: intramedullary thalamic area
IMD: intermediodorsal nucleus
LD: laterodorsal nucleus
LDDM: laterodorsal nucleus, dorsomedial part
LDVL: laterodorsal nucleus, ventrolateral part
LPLC: lateral posterior nucleus, laterocaudal part
LPLR: lateral posterior nucleus, laterorostral part
LPMC: lateral posterior nucleus, mediocaudal part
LPMR: lateral posterior nucleus, mediorostral part
MD: mediodorsal nucleus
MDC: mediodorsal nucleus, central part
MDL: mediodorsal nucleus, lateral part
MDM: mediodorsal nucleus, medial part
MG: medial geniculate nucleus
MGD: medial geniculate nucleus, dorsal part
MGM: medial geniculate nucleus, medial part
MGV: medial geniculate nucleus, ventral part
MGMZ: medial geniculate nucleus, marginal zone

OPC: oval paracentral nucleus
PaXi: paraxiphoid nucleus
PC: paracentral nucleus
PF: parafascicular nucleus
PIL: posterior intralaminar nucleus
Po: posterior nuclear group
PoMN: posterior nuclear group, medial nucleus
PoT: posterior nuclear group, triangular part
PT: paratenial nucleus
PVT: paraventricular nucleus
PVA: paraventricular nucleus, anterior part
PVP: paraventricular nucleus, posterior part
Re: reuniens nucleus
REth: retroethmoid nucleus
Rh: rhomboid nucleus
Sc: scaphoid nucleus
SG: suprageniculate nucleus
SPFPC: subparafascicular nucleus
Sub: submedius nucleus
TRN: thalamic reticular nucleus
VA: ventral anterior nucleus
VL: ventral lateral nucleus
VLG: ventral lateral geniculate nucleus
 VLGMC: ventral lateral genicular nucleus, magnocellular  
part
VLGPC: ventral lateral geniculate nucleus, parvocellular part
VM: ventromedial nucleus
VP: ventral posterior nucleus
VPL: ventral posterolateral nucleus
VPM: ventral posteromedial nucleus
VPPC: ventral posterior nucleus, parvocellular part
VRe: ventral reuniens nucleus
Xi: xiphoid nucleus
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axonal branches to multiple cortical and subcortical areas, which is 
an additional means of distinguishing thalamocortical cells36.

Two major axon types innervating thalamic neurons have been 
described: one arising in the cortex and the other primarily in sub-
cortical structures23,28; thus, input type is another feature that dif-
ferentiates thalamic neurons. Most corticothalamic afferent fibers 
are thin, have short arbors and contain small boutons (referred to as 
type I afferents). Subcortical afferents are thicker, have long arbors 
and contain large boutons (referred to as type II afferents). Type 
II afferents have also been described for corticothalamic neurons. 
Type I and type II terminals have also been referred to as modu-
lators and drivers, respectively2. In the LGN, type I afferents have 
terminals across laminae, each ending in a small spherical bouton, 
whereas type II afferents have terminals restricted to one lamina 
with large boutons37,38. Corticothalamic neurons have been divided 
into two groups according to their cell bodies: those with cell bod-
ies in layer 6 that project to all thalamic nuclei and those with cell 
bodies in layer 5 that project to a subset of thalamic nuclei2. In addi-
tion to glutamatergic afferents, inhibitory afferents from the TRN 
and other non-thalamic areas (for example, the pretectum and the 
zona incerta) innervate thalamic neurons1,2. These afferents exhibit 
a range of terminal patterns that vary in localization and structure. 
Similarly, cholinergic and serotonergic afferents from the brain-
stem, histaminergic afferents from the hypothalamus and norad-
renergic afferents from the parabrachial region have heterogeneous 
terminals in the thalamus1,2.

Physiology. Building on these findings, researchers have consis-
tently observed electrophysiological differences in thalamic nuclei. 

Whereas thalamic principal cells are thought to have comparable 
intrinsic properties across sensory nuclei, there is substantial 
heterogeneity in their action potential parameters39–43. Recently, 
whole-cell recordings from three motor-related thalamic nuclei 
(central medial (CM), ventral anterior (VA) and ventral lateral (VL) 
nuclei) showed that electrophysiological membrane and synaptic 
properties varied along a gradient from CM to VA to VL nuclei44. 
Whereas previous studies revealed electrophysiological heteroge-
neity of thalamic neurons, this study44 found that single-cell physi-
ological properties across thalamic nuclei exist along a continuum 
rather than forming unique, discrete profiles (Fig. 3b). However, the 
functional implications of this observation have not been revealed. 
This study also linked these physiological observations to graded 
transcriptional profiles (Fig. 3c) and morphological differences, 
suggesting that cellular morphology, terminal arborization, input 
type and electrophysiological properties are effective approaches 
for characterizing thalamic cellular diversity. Regarding the fun-
damental intrinsic feature of thalamic principal neurons45–47 their 
two distinct firing modes (tonic versus bursting)—heterogeneity in 
these modes has been associated with somatodendritic morphologi-
cal differences27,48,49.

Neurotransmitters and receptors. Finally, differences in the 
localization of neurotransmitters and their receptors50–57 led to 
the idea that variation in gene expression profiles may serve as an 
organizing principle across thalamic nuclei. One group identified 
four transcription factor genes that showed differential expression 
within excitatory thalamic nuclei58. A different set of genes was 
identified for inhibitory thalamic nuclei. Because it was thought 
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that these candidate genes might reflect distinct subpopulations 
that are shared across excitatory or inhibitory nuclei, many groups 
attempted to identify thalamic nucleus- and subpopulation-specific 
molecular markers59–63. Differences in gene expression led to the 
core–matrix theory of classifying thalamic nuclei64: a core of neu-
rons in individual nuclei project to the middle layers of the cortex in 
an area-specific manner and contribute to basic sensory perception, 
whereas a matrix of neurons in each nucleus projects to superficial 
layers of the cortex over wide areas and is involved in the integra-
tion of different aspects of sensory experience. This core–matrix 
classification of thalamic nuclei has been used to understand global 
patterns of functional connectivity in the human cortex65. More 
recently, one group took advantage of the Allen Brain Institute 
In Situ Hybridization database, which covers most of the mouse 
genome, and identified genes expressed in different parts of the tha-
lamic complex66. A set of six genes could be used combinatorially to 
define most thalamic nuclei. Conceptually, this study suggested that 
thalamic nuclei could be subdivided into nine groups (Fig. 4), dis-

tinct from the classical thalamic nuclear groups3 (Fig. 1). However, 
without functional data, it is not clear that the proposed grouping66 
of thalamic nuclei offers an improvement over the classical nuclear 
groups. Although gene expression differences are clearly useful to 
identify putative subpopulations, an integrative approach that com-
bines gene expression with morphology, connectivity and physiol-
ogy is, in our opinion, a better strategy to identify subpopulations 
and subnetworks.

Single-cell heterogeneity of thalamic neurons
Recent high-throughput scRNA-seq technologies have enabled 
RNA profiling of tens of thousands of individual cells from complex 
tissues67. Such single-cell gene expression studies have yielded new 
insights into cell type classifications in different brain regions18–20. A 
Drop-seq68 analysis of around 89,000 thalamic neurons found two 
major cell types: one expressing Rora (encoding retinoic acid-related 
orphan receptor-α) and the other expressing Gad2 (encoding glu-
tamate decarboxylase 2). According to the Allen Institute gene 
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expression database69, Rora is expressed in most excitatory tha-
lamic neurons, whereas Gad2 expression is enriched in the known 
inhibitory neuron-containing nuclei (the TRN and the LGN). These 
neuronal cell types could be further subdivided into eleven putative 
subpopulations each (Fig. 5a), which is very different from histori-
cal ideas of a few thalamic subpopulations in mice.

Within the Rora-expressing excitatory cell type, marker genes for 
a few of the eleven subpopulations exhibited expression restricted 
to individual thalamic nuclei. For example, the transcript for fibro-
blast growth factor 10 is expressed in laterodorsal nuclei, that for 
LY6/PLAUR domain-containing 6b is expressed in the PF and that 
for collagen type XXVII α1 chain is expressed in both anterodorsal 
and anteroventral nuclei. Similarly, within the Gad2+ inhibitory cell 
type, expression of Chrnb3 (encoding cholinergic receptor nicotinic 
β3 subunit) was selectively found in LGN interneurons, making 
Chrnb3 a useful marker of this subpopulation for functional stud-
ies. For both Rora+ and Gad2+ cell types, gene expression profiles 
identified a few clearly unique neuronal subpopulations. However, 
the majority of subpopulations within each cell type were grouped 
together (Fig. 5a), indicating some level of shared gene expression, 
which makes it likely that these subpopulations lie along a gene 
expression gradient.

Projection-based scRNA-seq identified distinct multi-nucleus 
subpopulations based on cortical targets, which exhibited gene 
expression gradients across nuclei and showed that the boundaries 
of different thalamic nuclei contain unique intermediate subpopu-
lations44. While the functional implications of these intermedi-
ate subpopulations remain unknown, this finding may reflect the 

developmental process through which thalamic nuclei and their 
subdivisions are formed. Retrograde labeling of thalamic nuclei 
from visual, somatosensory and motor forebrain areas resulted in 
five major subpopulations (Fig. 5b), which are different from the 
classical thalamic nuclear groups3 (Fig. 1). The anterodorsal nucleus 
and the nucleus reuniens each represented one subpopulation, dis-
tinct from each other and the other subpopulations. Nuclei in the 
remaining three subpopulations all provided input to each of the 
examined cortical regions and followed a topographical arrange-
ment: medial nuclei, including midline and intralaminar nuclei, 
formed one subpopulation; intermediate nuclei, including lateral 
posterior, posterior complex, MD, ventromedial, anteromedial 
and VA nuclei, formed another subpopulation; and lateral nuclei, 
including the LGN, the ventrobasal complex and laterodorsal, VL 
and anteroventral nuclei, formed the final subpopulation.

Within these three subpopulations, thalamic neurons lie along 
a gene expression gradient, which would not have been predicted 
based on historical findings. These subpopulations exhibited 
differences in electrophysiology as well as axonal morphology. 
Furthermore, Phillips et al.44 showed that neurons in the boundar-
ies of thalamic nuclei contained a mixture of the genes expressed 
in neighboring nuclei and thus appear to be a type of intermediate 
subpopulation that bridges thalamic nuclei. Using MD as an exam-
ple, Necab1 (encoding N-terminal EF-hand calcium binding pro-
tein 1) expression is enriched in the lateral and medial subdivisions, 
whereas Tnnt1 (encoding troponin T1) expression is enriched in the 
central subdivision. In the transition zone between lateral–medial 
MD and central MD, cells coexpressed both Necab1 and Tnnt1 (that 
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is, the intermediate subpopulation). These scRNA-seq approaches 
revealed gene expression gradients, suggesting that this may be an 
inherent feature of a subset of thalamic nuclei, which can be used 
to enhance our understanding of cell types and subpopulations in 
this structure.

identification of thalamic subnetworks
Historical studies already showed heterogeneity within individual 
thalamic nuclei; nevertheless, because the prevailing idea was that 
each nucleus supported a specific function, it was thought that mul-
tiple subpopulations were not needed to explain the structure–func-
tion relationship of thalamic nuclei. However, as it became clear 
that associative thalamic nuclei perform many different functions, 
we had to consider the possibility that there may be heterogeneity 
within each nucleus to provide a cellular-level framework for differ-
ent functional contributions.

An example of heterogeneity within a nucleus is the PVT. This 
nucleus participates in many different functions. For example, the 
PVT is critical for fear memory70, it regulates the expression of opiate 
withdrawal-induced symptoms71, glucose-responsive PVT neurons 

control sucrose-seeking behavior72, and PVT circuits are recruited by 
salience processing and/or wakefulness73,74. Tracing studies showed 
that the anterior PVT (aPVT) and the posterior PVT (pPVT) 
have different input–output connectivity75–77. Hypocretin receptor 
2-expressing neurons in the pPVT but not in the aPVT were shown 
to mediate cocaine-induced reinstatement78. Furthermore, pharma-
cological inactivation of the aPVT but not of the pPVT increased 
reward seeking in conditions of negative valence79. A recent study 
used molecular, connectivity, calcium imaging and behavioral 
experiments to further support the existence of these PVT sub-
populations80. It showed that Gal (encoding galanin) expression 
is high in the aPVT but decreases toward the pPVT, while Drd2 
(encoding dopamine D2 receptor) shows the opposite expression 
pattern; and that the aPVT and the pPVT innervate different parts 
of the nucleus accumbens and the medial prefrontal cortex (PFC). 
Specifically, the aPVT and the pPVT target the infralimbic and pre-
limbic cortices, respectively, which in turn mainly innervated the 
aPVT and the pPVT, respectively. This suggests that these two PVT 
subpopulations form independent thalamo-corticothalamic loops 
(Fig. 6a,b). This study further showed that the pPVT is sensitive 
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subpopulations (based on data from Phillips et al.44). Each of AD and RE (nucleus reuniens) represented one subpopulation, while other nuclei followed a 
topographical arrangement (medial, intermediate and lateral groups). Diagrams represent anterior to posterior coronal sections.
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to the valence of a salient stimulus, whereas the aPVT responds to 
stimulus salience irrespectively of valence80.

Thus, the PVT may contain at least two subnetworks. Careful 
analysis of the Gal+Drd2− and Gal−Drd2+ neurons along the ante-
rior–posterior axis is necessary to determine whether there are 
Gal+Drd2+ neurons in the medial PVT, which would indicate that, 
even within the PVT, there might be gene expression gradients. 
Because earlier studies did not differentiate between aPVT and 
pPVT neurons and this nucleus has been shown to contribute to 
a wide range of functions, additional work is needed to determine 
how these different functions may be compatible with the recently 
identified PVT subnetworks80. More specifically, while valence 
detection may recruit distinct PVT subnetworks along the anterior–

posterior axis, it is possible that, in other functions, both aPVT and 
pPVT neurons contribute to the same subnetwork.

Another example of heterogeneity within a nucleus is the TRN. 
In adult rats, neurons in distinct sectors of the TRN project to dif-
ferent thalamic nuclei81. Furthermore, within a sector, TRN neurons 
have separate terminal arborization fields either in a single nucleus 
or in different thalamic nuclei. Inputs to the TRN also showed dif-
ferences between recipient neurons. For instance, from the inner 
border to the outer border of the somatosensory TRN region82, 
there are three tiers of neurons, which receive inputs from posterior, 
ventral posteromedial and ventral posterolateral nuclei, respectively. 
Also, a recent study83 found that there are two subpopulations of 
layer 6 corticothalamic neurons that project to different excitatory 
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thalamic nuclei and different sectors within the TRN. Single-cell 
electrophysiological recordings found two neuronal subpopulations 
in the TRN: ventral TRN neurons that showed stereotypical burst 
firing and dorsal TRN neurons that lacked burst firing84,85. However, 
the distribution of these electrophysiological subpopulations within 
the different TRN tiers remains unclear.

Despite evidence of morphological and electrophysiological het-
erogeneity within TRN neurons, it is not clear whether the hetero-
geneity is linked to functional diversity16. Several pieces of evidence 
now show that this is the case. For example, a study that com-
bined neural recordings with behavioral experiments found that 
limbic-projecting TRN neuronal activity positively correlates with 
arousal level, whereas sensory-projecting TRN neurons are sup-
pressed by attentional states and show elevated synchrony during 
sleep15. Also, of parvalbumin (PV)-expressing TRN neurons, those 
in the limbic TRN but not those in the sensory TRN are crucial for 
flight behavior and receive excitatory inputs from the cingulate cor-
tex86. Moreover, two inhibitory TRN subnetworks have been identi-
fied based on connectivity, electrophysiology and contributions to a 
somatosensory behavior87.

Recently, an scRNA-seq study of mouse TRN neurons17 showed 
both a transcriptomic gradient of two negatively correlated gene 
expression profiles and a gradient in electrophysiological properties 
of TRN neurons, revealing an association between gene expression 
and physiology. Neurons at the extremes of this gradient express 
mutually exclusive markers (Spp1 (encoding secreted phosphopro-
tein 1) versus Ecel1 (encoding endothelin-converting enzyme-like 
1) (Fig. 6c–e). Importantly, these two TRN subpopulations showed 
differential functional roles in regulating sleep17. Comparing these 
results with findings from the Clemente-Perez et al. study87 sug-
gests that neurons concentrated in the core sector, which exhibit 
high-burst firing, may be related to the Spp1+ subpopulation, 
whereas the low-burst firing neurons may correspond to the Ecel1+ 
subpopulation. Another study found that calbindin (CB) and Sst 
also label distinct core- versus shell-like TRN subpopulations88. 
These studies showed that TRN neurons exhibit gene expression 
gradients, such that neurons at the extremes give rise to distinct 
core- versus shell-like subnetworks. Importantly, additional work is 
needed to examine whether core- and shell-like TRN subnetworks 
contribute differentially to other TRN functions or, in some cases, 
jointly perform the same functions.

Subnetworks are a likely general feature within individual 
thalamic nuclei
The TRN and the PVT are two thalamic nuclei with clear examples 
of subnetworks, but there is considerable evidence for heterogeneity 
within other individual thalamic nuclei as well. Because such het-
erogeneity is a necessary building block for subnetworks, it is likely 
that other individual thalamic nuclei also consist of multiple sub-
networks. Here, we highlight the cellular and functional diversity 
within several excitatory nuclei.

PF. The PF is best known for its role in motor functions, includ-
ing behavioral flexibility, via projections to the dorsal striatum89. A 
tracing study showed that separate PF populations project to the 
striatum and the subthalamic nucleus90, respectively, which was one 
of the earliest indications of heterogeneity within the PF. A recent 
report found that the PF → subthalamic nucleus projection (but not 
the PF → striatum projection) contributes to movement initiation, 
providing evidence that these two subpopulations are functionally 
distinct and are therefore likely to form two different subnetworks91. 
Of two earlier studies, one revealed three PF subpopulations (with 
inhibitory responses, excitatory responses and biphasic responses, 
respectively)92 and the other found two subpopulations in the lat-
eral PF (referred to as diffuse and bushy subpopulations) using 
morphology and electrophysiological properties93. Diffuse neurons 

were the major subpopulation, rarely displayed burst firing, mainly 
projected to the striatum and were hyperpolarized by muscarinic 
agonists, while the minor bushy subpopulation showed robust burst 
firing, mainly projected to cortical regions and were depolarized by 
muscarinic agonists. In vivo single-cell electrophysiological record-
ings from the PF also identified two putative subpopulations on the 
basis of their burst activity patterns94.

A recent study using molecular, connectivity and electrophysi-
ological approaches identified three PF subpopulations95 that were 
located in the medial, central and lateral PF, respectively, and pro-
jected to different striatal regions (medial to lateral). Marker genes 
for these three subpopulations, identified using scRNA-seq, showed 
that Pdyn (encoding prodynorphin) was expressed exclusively in the 
medial PF, Spon1 (encoding spondin 1) expression was restricted 
to the lateral PF and Tnc (encoding tenascin C) expression was 
restricted to the central PF. Although previous studies suggested 
that the PF contains discrete subpopulations, this work showed that 
the physiological properties from the medial PF to the lateral PF var-
ied along a gradient, similar to the physiological gradient identified 
in the projection-based thalamic scRNA-seq study44. Their cortical 
projections also differed. Medial PF axons were found in infralim-
bic, ventral parts of the anterior cingulate and insular cortices. The 
central PF projected to the same regions as the medial PF but also 
projected to motor and gustatory cortices, whereas the lateral PF 
projected to somatosensory and gustatory cortices. Because these 
projection pattern experiments did not use genetic approaches to 
target Tnc+ central PF or Spon1+ lateral PF subpopulations, future 
work must clarify whether the central and lateral PF projections 
closely match those of Tnc+ and Spon1+ PF neurons, respectively.

Their inputs also differed, with PFC axons preferentially target-
ing the medial PF, motor cortex axons targeting the central PF and 
somatosensory cortex axons targeting the lateral PF. These findings 
revealed that the PF is heterogeneous, containing subpopulations 
(including a new ‘central PF’ subpopulation) that are organized into 
parallel and independent associative, limbic and somatosensory cir-
cuits (Fig. 7).

Manipulations of these three distinct PF subpopulations in par-
ticular, central PF neurons—during motor behaviors will help to 
identify potential functional differences, and it will be interesting to 
determine how such differences map onto the medial-to-lateral axis. 
Such functional data are necessary to link these three distinct PF 
subpopulations to one or more subnetworks. At present, it remains 
unclear how these three genetically identifiable PF subpopulations95 
correspond to previous descriptions of cellular diversity in the PF 
based on morphology and/or electrophysiology92,93.

LGN. The LGN is best known for its role in visual perception and, in 
rodents, is the excitatory thalamic nucleus that contains the highest 
density of local interneurons1,2 (other rodent excitatory nuclei also 
contain interneurons, but at lower densities). One study examined 
the morphology of dorsal LGN neurons in mice and found three 
putative subpopulations96: X-like, Y-like and W-like subpopulations. 
These subpopulations showed spatial localization differences within 
the LGN. Distinct retinal ganglion cell (RGC) subtypes exhibit lam-
inar specialization within the LGN97, suggesting that the different 
target neurons may be distinct subpopulations. While inputs may be 
used to identify LGN subpopulations, it is likely that this property 
may also apply to other thalamic nuclei, which is an underexplored 
topic.

A more recent study further examined RGC inputs to LGN neu-
rons by performing single-cell-initiated trans-synaptic tracing98 
and identified three subpopulations of LGN neurons: ‘relay mode’ 
neurons that receive convergent input from one to five RGCs of the 
same type from one eye; ‘combination mode’ neurons that receive 
convergent input from 6–36 RGCs of different types from one eye; 
and ‘binocular combination mode’ neurons that receive convergent 
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input from up to 91 RGCs from both eyes. In addition, inputs from 
superficial layers of the superior colliculus selectively target super-
ficial LGN neurons99. Extracellular recordings from single dorsal 
LGN neurons under anesthesia revealed two distinct cell types: 
those that responded to increases and decreases in stimulus lumi-
nance, respectively100. A calcium imaging study found four putative 
cell types in the superficial layers of the dorsal LGN with respect to 
motion-direction coding101.

Complementing these physiological observations, it has been 
demonstrated that different types of direction-selective RGC con-
verge in a specialized subdivision of the dorsal LGN (shell), which 
delivers direction- and orientation-tuned signals to the superfi-
cial primary visual cortex102. Critically, this circuit is anatomically 
segregated from the retino-geniculo-cortical pathway that carries 
non-direction-selective visual information to deeper primary visual 
cortex layers via neurons in the LGN core, suggesting the presence 
of at least two distinct subnetworks based on direction selectivity.

Although traditionally it is thought that the LGN contains three 
to four distinct subpopulations, scRNA-seq of about 35,000 neu-
rons has identified eight LGN subpopulations103. It will be inter-
esting to determine whether these LGN subpopulations lie along 
a transcriptional gradient. There is also evidence for heterogene-
ity among LGN interneurons, which is an underexplored topic. In 
adult cats, there are at least two subpopulations of interneurons: 
larger interneurons that express neuronal nitric oxide synthase and 
smaller interneurons that do not104,105. Interlaminar interneurons 
may represent a third interneuron subpopulation in the LGN106,107. 

One study108 using mice showed that smaller interneurons have 
depolarized resting membrane potentials, stronger rectification and 
higher firing frequency, rebound bursting and h-current (Ih) com-
pared to the larger interneurons; and that nitric oxide synthase is 
exclusively expressed by the larger LGN interneurons, providing a 
molecular marker that can be used to functionally interrogate this 
subpopulation.

Although these studies clearly reveal heterogeneity within LGN 
neurons in terms of gene expression, morphology, inputs and neural 
activity, additional functional evidence must be obtained to demon-
strate the presence of multiple subnetworks in the LGN.

MD nucleus. The MD nucleus is the major thalamic structure 
associated with the PFC109. Recent studies have demonstrated that 
long-range interactions between the MD nucleus and the PFC are 
required for maintaining task-relevant activity patterns110 and for 
changing these patterns according to changes in behavioral con-
text1. In fact, early electrophysiological evidence pointed to the 
possibility that two distinct MD subpopulations serve these two 
functions111. This hypothesis was confirmed by Mukherjee et al., 
who linked genetically identified MD subpopulations to these two 
prefrontal effects112. Specifically, they identified a GRIK4+ MD 
subpopulation that preferentially innervates prefrontal PV+ inter-
neurons and showed that it is involved in decision making under 
uncertainty, responding to conflicting task-specific inputs and 
dampening PFC responses as a result. Another MD subpopula-
tion that is D2+ and that preferentially innervates VIP+ interneu-
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rons responds to another environmental uncertainty, sparseness 
of task-relevant cues; this subpopulation boosts PFC responses to 
enable decision making on the basis of faint evidence112. It is con-
ceivable that, when task complexity increases and multiple forms of 
uncertainty need to be resolved in the context of decision making, 
MD subnetworks formed by finer divisions of both subpopulations 
cooperate with the PFC to tackle such task complexity. Under such 
conditions, population-level analyses113 could be useful to identify 
the degree to which individual subpopulations contribute to build-
ing task-relevant subnetworks.

Early studies on the MD thalamus used cyto-architecture, 
myelo-architecture, chemo-architecture and reciprocal connectiv-
ity patterns with the PFC to divide the MD into medial, central, 
lateral and paralamellar subdivisions1,114. In addition, there were 
rostrocaudal and dorsoventral differences in the organization and 
connectivity of MD neurons114. A single-neuron tracing study found 
variations within neurons from the same subdivision in terms of 
their PFC projections115. Within each target region, individual 
neurons from the same MD subdivision formed non-overlapping 
patchy axon arbors, suggesting that they may recruit distinct PFC 
ensembles. There were input differences as well, with the TRN and 
raphe nuclei sending topographical projections to MD subdivi-
sions115. Both excitatory radiate and bushy thalamic subpopulations 
are present in each MD subdivision; while radiate neurons are dens-
est in the center of each subdivision, bushy cells tend to be closer to 
the boundaries between subdivisions116.

Application of a dopamine receptor D2 (D2R) agonist to rat slices 
revealed differences in the responses of MD neurons117, but whether 
these differences map onto MD subdivisions was not examined. 
In vivo single-cell physiological responses of MD neurons to nox-
ious stimuli are found in different subdivisions118, suggesting that 
MD subdivisions may have distinct roles in processing such stimuli. 
A recent study showed that medial MD neurons projecting to the 
PFC have different morphological and electrophysiological profiles 
than lateral MD neurons projecting to the same PFC region119. This 
observation suggests that distinct MD subpopulations converge in 
the same PFC region but potentially perform different functions. 
Based on these studies, it is likely that the MD nucleus contains 
subdivision-specific subnetworks. Because the thalamic scRNA-seq 
study found a new subpopulation at the boundaries of MD subdivi-
sions44, it is possible that MD-specific scRNA-seq experiments will 
reveal gene expression gradients similar to those in the TRN.

Cross-species thalamic cellular diversity
Although studies that have identified subnetworks within the 
thalamus up to now have used rodents, there is substantial evi-
dence to suggest that heterogeneity among thalamic neurons is 
conserved from rodents to primates. Here, we briefly discuss 
several primate studies that support the idea of diverse tha-
lamic subpopulations or show that some cellular properties of 
primate thalamic neurons are comparable to those in rodents. 
Neurotransmitter expression patterns are usually conserved 
across species; for instance, nicotinic binding sites are enriched in 
the LGN, the MD nucleus and the rhomboid nucleus in mice and 
monkeys52. Similarly, a study examined the expression of genes in 
the monkey thalamus that were enriched in different mouse tha-
lamic nuclei and found highly consistent patterns63. Several genes 
were expressed in excitatory nuclei in monkeys but not in rodents. 
A study using high-density oligonucleotide arrays to identify tha-
lamic nuclei-specific gene expression in adult monkeys120 showed 
that over 550 genes were selectively expressed in the anterior 
thalamus or the CM, MD or ventral posterior nucleus. This study 
identified a marker for excitatory nuclei (coding for transcrip-
tion factor 7-like 2), a marker for excitatory nuclei but not the 
CM nucleus or the PF (coding for Purkinje cell protein 4), a CM–
PF-specific marker (coding for cerebellin 1 precursor) and an 

LGN marker (Spp1). These markers have comparable expression 
patterns in mice69. A study that showed distinct subpopulations 
labeled by PV or somatostatin (SST) in the mouse TRN showed 
that these two subpopulations are also found in human TRN sam-
ples87. Additionally, in primates, SST-expressing neurons exhibit 
differential distribution in the visual sector of the TRN121. As in 
rodents, the LGN in monkeys has distinct subpopulations based 
on single-cell electrophysiological properties, spatial localization 
and inputs from distinct RGC subtypes122,123.

Tracing studies have also revealed subpopulations within tha-
lamic nuclei in monkeys109,124,125. For example, the PF in monkeys 
contains projection-specific subpopulations90, including neurons 
that project to striatal regions and neurons that project to the brain-
stem124. The MD nucleus consists of medial, central and lateral sub-
divisions based on their differential projection pattern to the frontal 
cortex in both rats114 and monkeys109. Moreover, in monkeys, medial 
MD and lateral MD nuclei differ in their input regions122, further 
supporting their potential role in subnetworks.

A well-established difference between rodent and primate thal-
ami is that, in the latter, at least 20% of neurons in thalamic nuclei 
are local interneurons, which is not the case for rodents1. In mice, 
interneurons in the LGN and the TRN originate in two develop-
mental programs126. Interestingly, markers for these two interneuron 
subpopulations are also expressed in marmoset thalamic interneu-
rons126. While this suggests that interneuron subpopulations may 
have similar properties in rodents and monkeys, a recent study also 
revealed new primate-specific interneuron subpopulations as well 
as significant differences in gene expression profiles of interneurons 
between rodents and primates127. Much more needs to be done to 
fully reveal cellular and physiological diversity and subnetworks in 
the primate thalamus.

Future directions
Although early studies of the thalamus found cellular diversity, new 
data suggest that the idea of discrete genetic subpopulations might 
not accurately reflect all thalamic heterogeneity. Modern single-cell 
profiling has shown that thalamic neurons exhibit gene expression 
gradients, which paves the way for the identification of new sub-
populations. While we are only beginning to causally link diverse 
thalamic subpopulations to functions, such studies17,80 are already 
enhancing our understanding of how thalamic circuits control a 
wide range of cortical processes, among many other functions. 
Interestingly, genetic gradients appear to be a common feature 
across the mammalian brain, as demonstrated by recent transcrip-
tomic profiling of hippocampus and amygdala neurons18,128. Gene 
expression gradients would offer a greater dynamic range for encod-
ing information from the external world, which is itself continu-
ous in nature. During early life, these gradients may allow different 
nuclei to develop one or more subnetworks depending on their con-
nectivity and functional contributions. Further, because the cortex 
is composed of gene expression gradients129, it is possible that tha-
lamic inputs exhibit gradients to form thalamocortical loops with 
the various cortical subpopulations. Exciting future research direc-
tions include investigations into the development of these thalamic 
subpopulations, whether these gradients of cellular variation exhibit 
activity-dependent changes either during development or following 
behavioral training and whether these subnetworks are altered by 
disease states. The thalamus is altered in many human disorders, 
including Alzheimer’s disease130, schizophrenia131, Parkinson’s dis-
ease132 and autism spectrum disorder133. We propose that the appli-
cation of subnetwork-specific manipulations in thalamic disease 
models, which to date has not received much attention, will lead to 
the development of new therapeutic strategies.
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